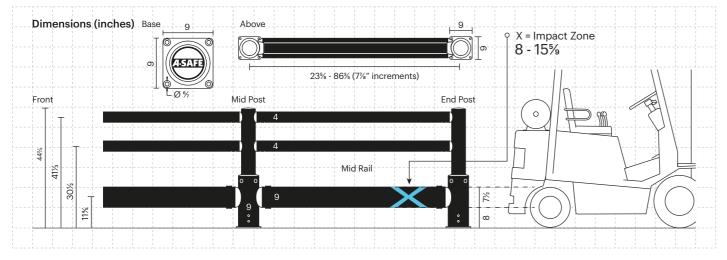

Technical Information



Impact Test	Impact Angle on 78% inch Post Centers				
	90°	67.5°)	45°	22.5°
Mid Rail Max Energy (Joules)	15,100	17,69	1	30,200	103,109
End Post Max Energy (Joules) - 90°			6,900		
Mid Post Max Energy (Joules) - 90°			6,900		
Deflection at Max Energy 17 inches			Force to Bolt 24kN		
			Post Ground		

Material Properties			
Temperature Range	-22°F to 32°F		
Ignition Temperature	698°F to 734°F		
Flash Point	662°F to 698°F		
Toxicity	Not Hazardous		
Chemical Resistance	Excellent - ISO/TR 10358		
Weathering Stability (Grey Scale)	5/5*		
Light Stability (Blue Wool Scale)	7/8**		
Static Rating (Surface Resistivity)	1015 - 1016 Ω		
Hygiene Seals	Yes		

* Weathering scale 1 is very poor and 5 is excellent ** Light stability scale 1 is very poor and 8 is excellent

** Light stability scale 1 is very poor and 8 is excellent

Post Rail Standard Black
RAL 9005*
PANTONE Black
RAL 9005*
PANTONE Black
RAL 9005*

Color Combination

*Please note that the RAL and PANTONE color listed are the closest match to standard A-SAFE colors, but may not be exact matches of the actual product color and should be used for guidance only.

iFlex Cold Storage Single Traffic Guardrail+

A-SAFE iFlex Cold Storage Single Traffic Guardrail+ is designed to protect people, buildings and infrastructure from impacts with forklifts and other vehicles. This high-strength dual-function barrier has been purpose-engineered for applications within sub-zero environments such as cold storage facilities. It delivers supreme performance in temperatures as low as -22°C.

Manufactured from Memaplex[™] Sub-Zero, a unique blend of polymers designed to withstand multiple impacts without cracking or fragmenting, iFlex Cold Storage Single Traffic Guardrail+ provides both guidance and physical protection. A heavy-duty traffic rail provides robust resistance against vehicle impacts, while an ergonomic handrail increases the height of the guardrail to segregate pedestrian walkways and prevent falls.

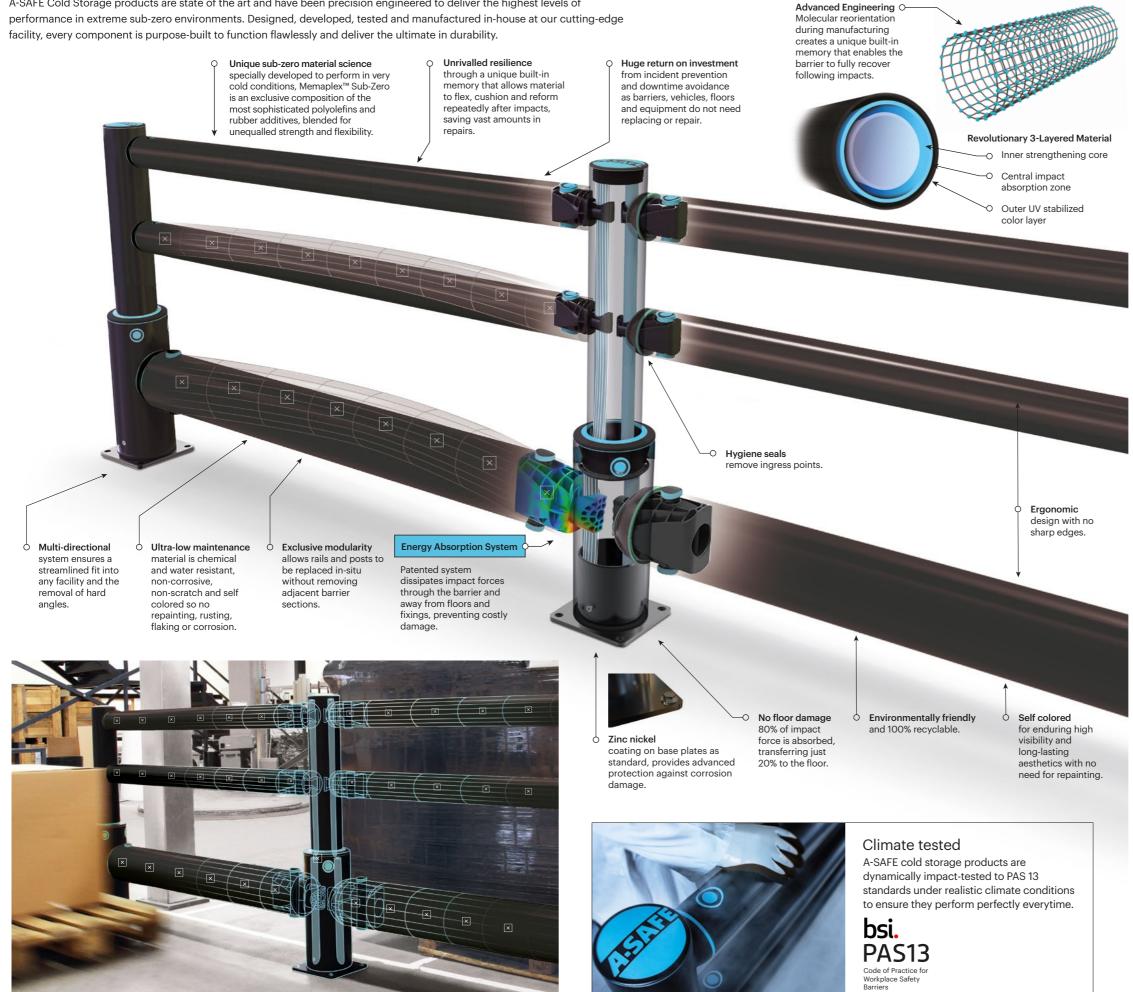
Ideal for busy sub-zero environments where people and vehicles share space.

Your Authorized A-SAFE Distributor 856-687-2227 • sales@banksindustrial.com • BanksIndustrial.com PO Box 382 • Berlin, NJ 08009

A-SAFE

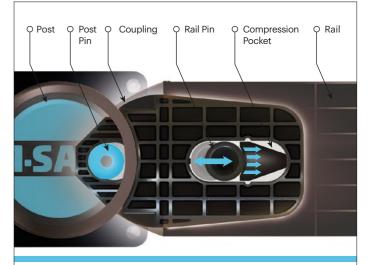
Tested to the global benchmark in guardrail safety

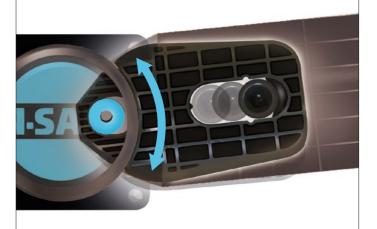
bsi. PAS 13


Code of Practice for

Workplace Safety Guardrails

Engineered for performance


A-SAFE Cold Storage products are state of the art and have been precision engineered to deliver the highest levels of



Energy Absorption System

A patented 3-phase system that activates sequentially for unparalleled energy absorption

PHASE 1: Memaplex[™] rail flexes to absorb impact, initiating the rail pin to slide forward and transfer load energy to the compression pocket.

PHASE 2: Compression of the pocket continues to disperse energy as the coupling rotates around the post pin to activate further absorption.

PHASE 3: At peak energy, the coupling twists further, engaging the post pin and instigating torsion of the post to dispel remaining forces.